下面是鲁班乐标给大家带来关于混凝土桥梁裂缝的成因与防治的相关内容,以供参考。
随着社会的不断进步,国家加大了对桥梁的投资,混凝土在桥梁结构中的应用也越来越多,但是,相应暴露出来的质量问题也越来越多,其中,混凝土结构产生的裂缝问题,尤为突出,是一个迫切需要解决的技术难题。虽然理论上,结构裂缝是不可避免的现象,但通过施土中的技术管理措施,减少和控制裂缝是完全可能的。笔者根据多年的桥梁施工管理经验,谈谈有关桥梁混凝土裂缝出现的原因、预防措施和处理方法,可供桥梁施工管理人员参考。
一、混凝土桥梁裂缝形成的原因
(一)水泥水化热
混凝土浇筑初期,水泥在水化过程中产生大量水化热,使混凝土的温度迅速上升。但由于混凝土表面散热条件较好,热量可以向大气中散发,因此温度上升较少;而混凝上内部由于散热条件较差,热量散发慢,水泥散发的热量不易散失,导致温度上升较多。水泥水化热引起的温度变化与混凝土的品质有关,如水泥和粉煤灰的用量,单位体积水泥水化放热量,并随混凝土的龄期按指数关系增长,一般在3-5天达到最高温度。随着龄期的增长,弹性模量的增高,对混凝土内部降温收缩的约束也愈来愈大,以至产生了很大的拉应力,当混凝土抗拉强度不足以抵抗这种拉应力时,便开始出现温度裂缝。
(二)地基不均匀沉降
当地基发生不均匀沉降时,会引起构件的约束变形,使结构内部拉应力发生变化,而一旦结构内部拉应力超过自身的抗拉强度时,在结构的薄弱部位就会产生沉降裂缝。在桥梁工程中,不均匀沉降裂缝产生的原因主要有以下几种:
1.地质勘察精度不够、试验资料不准。在没有充分掌握地质情况下就进行设计、施工,这是导致地基不均匀沉降的主要原因。
2.地基地质条件差异太大。建造在山区沟谷的桥梁,河沟处的地质与山坡处的地质条件差异较大,河沟中甚至存在软弱地基,地基土由于不同压缩性引起不均匀沉降。
3.结构荷载差异太大。在地质情况大概一致的条件下,当各部分基础荷载差异太大时,有可能引起不均匀沉降,例如高填土箱形涵洞中部比两边的荷载要大,中部的沉降就要比两边大,箱涵可能开裂。
4.结构基础类型差别大。同一桥梁中,混合使用不同基础如扩大基础和桩基础,或同时采用桩基础但桩径或桩长差别大时,或同时采用扩大基础但基底标高差异大时,也可能引起地基不均匀沉降。
5.地基冻胀。在低于零度的条件下含水率较高的地基土因冰冻而膨胀,而一旦温度回升,冻土融化,地基下沉,因此地基的冰冻或融化均可造成不均匀沉降。
6.桥梁建成以后,原有地基条件变化。如大多数天然地基和人工地基浸水后,尤其是黄土、膨胀土等特殊地基土,土体强度遇水下降,压缩变形加大,均可能造成不均匀沉降。
(三)温差变化
混凝土在施工期间,外界气温变化的影响很大。混凝土的内部温度是浇筑温度、水化热的绝热温升和结构散热降温等各种温度的叠加之和,外界气温愈高,混凝土的结构温度也愈高,如外界温度下降,会增加混凝土的降温幅度,特别是在外界气温骤降时,会增加外层混凝土与内部混凝土的温差。温度应力是由温差引起的变形造成的,温差愈大,温度应力也愈大。混凝土具有热胀冷缩性质,当外部环境或内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。
(四)混凝土收缩变形
实际工程中,混凝土因收缩所引起的裂缝是最常见的。混凝土中含有大量空隙、粗孔及毛细孔,孔隙中存在水分,而水分的活动将影响到混凝土的一系列性质,引起混凝土的收缩变形,导致裂缝的产生。混凝土的收缩变形主要有以下几种形式:
1.自由收缩。它是混凝土硬化过程中由于化学作用引起的收缩,是化学结合水与水泥的化合结果。
2.塑性收缩。混凝土浇筑初期,水泥水化反应激烈,分子链逐渐形成,出现水分急剧蒸发现象,引起混凝土失水收缩,此时骨料与胶合料之间产生不均匀的收缩变形。
3.碳化收缩。它是指大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。
4.干缩。水泥石在干燥和水湿的环境中要产生干缩和湿胀作用,最大的收缩发生在第一次干燥之后。
(五)钢筋锈蚀引起的裂缝
由于保护层厚度不足,混凝土保护层受二氧化碳侵蚀碳化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长几倍,从而产生膨胀应力,导致保护层混凝土开裂,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。
(六)冻胀引起的裂缝
大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀,因而混凝土产生膨胀应力;同时混凝土凝胶孔中的过冷水在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,混凝土强度降低,并导致裂缝出现。尤其是混凝土初凝时受冻最严重,成龄后混凝土强度损失很大。当混凝土中骨料空隙多、吸水性强,骨料中含泥土等杂质过多,混凝土水灰比偏大、振捣不密实,养护不力使混凝土早期受冻等,均可能导致混凝土冻胀裂缝。
(七)施工方法和施工工艺质量的原因
在混凝土结构构件制作、运输、安装过程中,施工方法不合理、施工质量较低,容易产生各种形式的裂缝,产生裂缝的原因主要有以下几方面:
1.骨料进场控制不严:碎石厂对碎石的分级生产控制不严格,施工单位进场的石子混堆、混放,导致混凝土拌合物和易性性能差,造成混凝土质量波动,质量差的混凝土容易产生裂缝。
2.施工前对支架压实不足或支架刚度不足,浇筑混凝土后支架不均匀下沉;施工时模板刚度不足,在浇筑混凝土时,由于混凝土自重和侧向压力的作用使得模板变形。
3.混凝土浇筑供料速度不及时,连续性差,搅拌时间控制不好。
4.混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大。
5.混凝土振捣不密实、不均匀,漏振或过振,出现蜂窝、麻面、空洞,导致截面削弱、钢筋锈蚀或其他荷载裂缝。
6.混凝土养护不到位,会使混凝土的水分流失,混凝土失水后表面产生拉应力混凝土开裂,出现不规则的裂缝。
7.施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷载作用下产生裂缝。
二、桥梁混凝土裂缝的控制与预防措施
针对以上提及的几种原因,应该采取以下几种措施来控制与预防桥梁混凝土裂缝的产生。
(一)设计措施
1.采取合理的结构形式和合理的分块。混凝土工程施工中如果允许设置水平施工缝,应根据温度裂缝的要求进行分块,且设置必要的连接方式。
2.合理布置分布钢筋:尽量采用小直径、密间距布筋,结构边缘处或变截面处需要加强分布筋,表面可以设置钢筋网片。
3.为防止钢筋产生锈蚀裂缝,设计时应根据规范要求控制裂缝宽度、采用足够的保护层厚度。
4.合理地进行建筑物在使用阶段的沉降计算,以控制由于地基不均匀沉降产生的宽裂缝。
(二)优选混凝土原材料
优选混凝土原材料、优化混凝土配合比的目的是使混凝土具有较大的抗裂能力。
1.采用低水化热的水泥。由于矿物成分及掺加混合材料数量不同,水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的,水化热较高;混合材料掺量多的水泥水化热较低。为减小水泥水化热,降低混凝土绝热温升和混凝土内部温度,从而减小内外温差,应选用低水化热的水泥产品。
2.掺粉煤灰。可以用适量粉煤灰取代一部分水泥以削减水化热产生的高温峰值。混凝土中掺用粉煤灰后,可提高混凝土的抗渗性、耐久性,减少收缩,降低胶凝材料体系的水化热,提高混凝土的抗拉强度,抑制碱集料反应,减少新拌混凝土的泌水等。3.骨料的选用。应优先选用热膨胀系数小、含泥量低的骨料,并强调骨料的连续级配,条件许可时,应尽可能使用粒径大的骨料。之所以这样,因为一方面骨料本身的强度就远大于水泥胶体,另一方面,采用连续级配的骨料,可以提高骨料在混凝土中的所占体积,能大幅度降低水泥用量,从而间接地降低水化热。
4.优化混凝土配合比。认真进行混凝土配合比设计,通过试验确定施工中采用的配合比。严格控制砂石骨料的含泥量,在满足混凝土设计强度等级、混凝土各项性能要求以及泵送混凝土流动性要求情况下,选取节省水泥,降低混凝土绝热温升。
(三)地基处理
1.尽可能以桩柱式(坐于岩盘上的重力式基础除外)基础及下部的形式加宽,避免下部产生不均匀沉陷。
2.对基底采取夯实、换填夯实等,使沉降均匀,基底的埋深要考虑冻土的影响;对刚性扩大基础,建议对下部结构联成一体,并尽量对基底进行技术处理,尽可能减少不均匀的沉陷。
3.新建基础的承载能力要比原有基础适当提高;加强横向连接,降低沉降对新旧接缝处受力的影响。
4.增加桥面水泥混凝土铺装的刚度,这是提高桥梁上部结构整体性的重要措施;
5.在做桥梁上部结构设计时,把基础不均匀沉降作为荷载适当加以考虑。
(四)采取合适的施工措施
合适的施工方法不仅能降低混凝土内的最高温度,还能减小混凝土的内外温差,有效地降低温度裂缝的产生,达到控制裂缝的目的。
1.浇筑方案。在混凝土施工过程中,为了有效降低混凝土的内外温差,常采用分块浇筑。分块浇筑又可分为分层浇筑法和分段跳仓浇筑法两种。分层浇筑法目前有全面分层法、分段分层法、斜面分层法3种浇注方案。全面分层浇筑是在第一层全面浇筑完毕后,开始浇筑第二层时,已施工的第一层混凝土还未初凝,如此逐层进行,直至浇筑完成;分段分层浇筑,适用于厚度不大而面积或长度较大的工程,施工时混凝土先从底层开始浇筑,进行至一定距离后再浇筑到第三层,如此依次向前浇筑其他各层;斜面分层适用于结构的长度超过厚度的三倍的浇筑层,振捣上作从浇筑层的下端开始,逐渐上移,此时向前推进的浇筑混凝土摊铺坡度应小于1:3,以保证分层混凝土之间的施工质量。
在时间允许的条件下,可将混凝土结构采用分层多次浇注,施工层之间按施工缝处理,即薄层浇筑技术,它可以使混凝土内部的水化热得以充分地散发,应该注意的是分层浇筑的间歇时间。目前水工混凝土中遵循的原则是薄层短间歇,对施工缝的处理要求十分严格;而在桥梁混凝土施工中,由于体积相对较小,多采用一次性整体浇筑和全面分层多次浇筑。
2.振捣工艺。采用二次振捣技术,即是浇灌后的混凝土,在振动界限以前,给予二次振捣,改善混凝土强度,提高抗裂性,能排除混凝土因泌水在粗骨料、水平钢筋下部生成的水分和孔隙,提高混凝土与钢筋的握裹力,防止因混凝土沉落而出现的裂缝,以减小内部微裂,增加混凝土密实度,从而可使混凝土抗压强度提高10-20%左右。
3.降低混凝土浇筑温度的措施。混凝土因为水化热引起体积变化,以及因为环境温度的周期变化均会引起开裂,如果把混凝土的初始温度降低到一定程度,使之产生的温差较小,从而产生的拉应力小于混凝土抗拉强度,可以避免混凝土开裂。降低浇筑温度的具体措施包括:①浇筑前预冷混凝土;②降低原材料温度,如做好水泥散热、骨料浇水冷却和预冷等;③采用冷却拌和水与加冰拌和;④减少运输途中的热量倒灌,包括减小运输距离,采用特制的保温罐车,用保温材料包裹混凝土泵送管道等。
(五)混凝土养护
刚浇筑的混凝土、强度低、抵抗变形能力小,如遇到不利的温湿度条件,其表面容易发生有害的冷缩和干缩裂缝。保温的目的是减小混凝土表面与内部温差及表面混凝土温度梯度,防止表面裂缝的发生。
混凝土表面压平后,先在混凝土表面洒水,再覆盖一层塑料薄膜,然后在塑料薄膜上覆盖保温材料进行养护,保温材料夜间要覆盖严密,防止混凝土暴露,中午气温较高时可以揭开保温材料适当散热。底层塑料布下预设补水软管,补水软管间距6-8m,沿管长度方向每100mm开5mm水孔,根据底板表面湿润情况向管内注水,养护过程设专人负责。
三、混凝土裂缝的治理方法
如果裂缝情况影响到混凝土结构的性能时,就应更慎重研讨,分析比较,采用经济高效的方法,达到加固目的,可采用的方法有如下几种:
(一)表面处理法
做法:沿混凝土裂缝表面铺设薄膜材料,般可用环氧类树脂或树脂浸渍玻璃布。施工时先将混凝土表面用钢丝刷打毛,清水洗净干燥,将混凝土表面气孔由油灰状树脂填平,然后在其上铺设薄膜,如果单纯以防水为目的,也可采用涂刷沥青的方法。该法适用于缝较窄,浆材难以灌入,深度未达到钢筋表面的发丝裂缝。(二)填充法
施工时,先将槽内碎片清除,必要时涂底层结合料,填充后待填充料充分硬化,再用砂轮或抛光机将表面磨光。该法一般用来修补较宽的裂缝(0.3mm以上),作业简单,费用低。宽度小于0.3mm,深度较浅的裂缝,以及小规模裂缝的简易处理可采用取开V形槽,然后作填充处理。
(三)灌浆法
做法:先将结构物的裂缝或孔隙与外界封闭,仅留进浆口及排气孔,然后将较低粘度的浆液通过压浆泵以一定的压力将浆液压入缝隙内并使其扩散、胶凝固化,以达到恢复整体性、强度、耐久性及抗渗性的目的。浆液主要有:水泥浆、环氧糠酮、聚氨脂等。此法应用范围广,从细微裂缝到大裂缝均可适用,处理效果好。
四、结束语
在桥梁混凝土施工过程中,采用合理的设计措施,正确选择原材料,采用科学的施工措施,严格施工管理,就可以提高混凝土本身抗拉性能,减少混凝土裂缝的产生,保证工程质量,避免因出现裂缝而影响工程的质量甚至导致结构垮塌的事故的发生。
建筑业查询服务