在注射模塑光学部件的过程中,由于不能在其表面进行标注,因此模腔压力的测定就受到了限制。但为了使用这个重要的过程参数来进行质量监控,人们采用了一种使用特殊测量销钉的非接触式测量方法来测量空腔压力。将流路耦合到pvT图中来开发新的加工监视技术。 此处并未包含质量上高端的光学组件,正相反,恰好只能用最高的质量水平来生产实际应用的光学部件。就棱镜而言,不仅其几何形状和表面结构起到了重要作用,而且生产的重复性也会大大影响诸如内应力或分子取向之类的产品内部性能。因此就个例而言,要在生产过程中评定产品光学性能的话,仅靠检查部件的几何形状或者以肉眼来检查部件表面是不够的。进行光学性能测定就显得更为重要。例如用Shack-Hartmann传感器(SHS)测得的波阵面的扭曲度就可以作为一个判定结果。可用数学方法推演出更为重要的质量函数。 对诸如注射模塑的连续生产过程而言,我们很难用上述的方法来进行光学测试。毫无疑问,必须将灵敏的测试装置从外部来进行安置,这是非常耗时的过程。并且这个过程中我们需要长时间的等待,直到得到测试结果为止。这会延迟整个生产顺序,特别是在开始阶段更是如此。一般来讲,在上述的时间段内机器必须停止工作。考虑到长的生产周期和机器成本,生产出废品是不可接受的。 制造光学部件的加工变型 在光学部件的注射成型过程中,模塑过程不仅对其几何形状有影响,而且对部件的内部性能有至关重要的影响。有关部件质量的研究表明,如由注塑模塑改为注塑-压缩模塑仅能稍微增加部件几何尺寸的精度。然而其光学特性则大概能提高7个因子,因而仅通过测试几何参数来评估部件的光学性能是不够的。因此证明注塑-压缩模塑成型是用来加工光学部件的一个适合方法。在加压过程中,在压缩相后直接施加压力相。压力以一个等同于均相分布压力被施加到部件表面。作为与常规的注塑-压缩模塑相关的不同变型的例子,下文将介绍注塑-加压及膨胀-压缩模塑。 常规注塑-压缩模塑 与标准注塑模塑成型相比,注塑-压缩模塑允许模具的流路/壁厚比高达500:1。在光学部件的表面没有转换流痕是很重要的。因此一个循环中的每个独立的过程和运动必须连续贯通。 在填充阶段,模具仅打开少许。缝隙大小相当于压缩冲程的值。塑料熔体被注入模具后,压缩过程就以螺杆位置为函数而开始了。由于模具是打开的,因此在注塑过程中其内部压力降低甚至完全消失。压缩阶段是通过一个位置可调节的螺杆来开始的。在模腔被完全充满之前,塑料熔体沿流路的末端流动,并且被随后的压缩阶段压缩,这也补偿了塑料的收缩。
建筑业查询服务
行业知识