1 概述
近年来随着我国地铁建设的发展,越来越多的城市修建地铁。而地铁深基坑工程具有开挖难度大、工期长、费用高及对周围环境的影响大等问题,它已经成为城市建设中一个亟待攻克的难题,其中的环境保护问题已经成为基坑支护中诸多问题的重中之重。因此地铁基坑工程施工的好坏,直接影响到基坑工程的造价和安全,同时,保护邻近建筑(或管道)的安全并保证其正常使用具有重大的经济效益和社会效益。
2 基坑开挖引起的环境效应
城市地铁深基坑工程具有以下特点:(1)深基坑工程施工环境条件比较差。由于高层、超高层建筑都集中在城市中心区及主要街道的两旁,建筑密度大,人口密集,交通拥挤,施工场地狭小,束缚了工程施工的手脚。(2)基坑开挖越来越深。业主为节约土地,充分利用原有基地面积和地下空间,设置车站、人防、机房及消防设施,故地铁结构的深度和层数相应增加。(3)必须设置技术可靠可行的支护结构来确保安全,还要考虑到对周围地下的煤气、上水、下水、电讯、电缆等管线的影响,尽可能减少对这一系列建筑及设施的损坏性影响。(4)随着竞争机制的增加,业主对造价、工程进度、工程质量的要求也越来越高,相应增加了施工难度。
2.1降低地下水引起的环境效应
降低地下水位引起的环境效应表现为:(1)降低地下水位引起的地面沉降;(2)地下水渗透破坏引起的基坑坍塌;(3)基坑突涌导致的基土开裂。
在基坑开挖过程中,通常采用井点降水来达到降低水位、固结土体、稳定边坡和便于开挖的目的。同时,基坑降水,由于水位降落而引起地面沉降,相应形成以水位漏斗为中心的地面沉降变形区,导致次范围内的建筑、道路、管网等设施因不均匀沉降而发生断裂、倾斜,影响其正常使用和安全。
降低地下水位引起的环境变化机理为:(1)水位降低减少了土中地下水对地上建筑物的浮托软弱土层受到压缩而沉降;(2)使孔隙水从土中排出。土体固结变形,本身就是压缩沉降过程,降水过程中,常会随着抽出的水流带走土层中部分细微土粒,引起周围地面沉降。地面沉降与地下水位降落是对应的,地下水位降落的曲面分布必然引起邻近建筑物的不均匀沉降。当地面沉降达到一定程度时,建筑物就会发生开裂、倾斜甚至倒塌现象;(3)基坑开挖时,基坑内、周边地下水位存在一定的水头差,在动水压力作用下,基坑土会发生流(土)失、潜蚀现象,导致土体结构松动和破坏,引起基坑坍塌。(4)当基坑内、外水位差较大,或基坑下部有承压水存在,基坑使原有土压力减少到一定程度时,承压水的水头压力大于基坑底土体浮重力,形成管涌、侧涌现象,造成基土开裂。
2.2支护结构发生变形和位移引起的环境效应
支护结构发生变形和位移引起的环境效应表现为:(1)支护结构本身破坏而导致边坡失稳;(2)支护结构整体破坏而导致基坑隆起;(3)支护结构发生变形和位移而引起邻近建筑设施破坏。
支护结构发生变形和位移引起的环境效应的机理为:(1)基坑地基土卸载改变坑底原始应力状态,在基坑开挖时,土体中自重压力减小,土体的弹性效应使基坑底面产生一定的回弹变形(隆起),坑底表现为弹性隆起,其特征为坑底中部隆起最高,弹性隆起在基坑开挖停止后很快就停止,基本不会引起坑外土体向坑内移动;随着开挖深度的增大,坑内外高差所形成的加载和地面各种超载的作用使围护墙外侧土体向坑内移动,使坑底产生向上的塑性变形,其特征为两边大中间小的隆起状态;(2)在基坑周围产生较大的塑性区,并引起地面沉降;(3)基坑底面暴露时间过长,使基坑积水,一方面,使得粘性土的流变性,将增大墙体被动压力区的土体位移和墙外土体向坑内的位移,从而增加地表的沉降。(4)支撑物受破坏或锚杆体系抗拔力不足,拉杆自身断裂或拉杆及锚座的连接不牢等引起支护结构体系承载能力丧失支护结构嵌入深度不足引起基坑隆起,并使地基强度降低或丧失。
3 基坑工程中的环境保护
对于基坑周围环境的保护,人们积累了许多的保护经验,如选用刚度大的围护结构、进行基坑内外的地基加固以提高土体的抗变形能力、对基坑近旁的建筑物和构筑物进行地基加固或地基处理、在基坑与建筑物间设置隔断桩或隔断墙以及注浆保护、通过少量注浆影响变形传播的途径等措施;尽管保护方法千差万别,但其作用的机理不外乎是减少基坑开挖的影响、提高围护环境的抗变形能力、切断影响途径等3种。
3.1基坑工程中的环境保护
时空效应法是为解决深基坑整体稳定和坑周地层位移控制问题、参考新奥法隧道施工中的时空效应理论和大量软土基坑实践而提出的一种计算和控制基坑结构变形及周围地层位移的方法。通过大量的软土基坑实践,人们已经意识到:在基坑施工过程中, 每个开挖步骤的开挖空间几何尺寸、围护墙无支撑暴露面积和时间等施工参数对基坑变形具有明显的相关性。考虑时空效应的施工步骤的主要特点是:根据基坑规模、几何尺寸、围护墙体及支撑结构体系的布置、基坑地基加固和施工条件,按照“分层、分块、对称、平衡、限时”的原则确定施工方案。时空效应法强调设计与施工密切配合,一改以往设计工况与施工工况不符的现状,实践证明,科学地制定考虑时空效应的开挖和支撑的施工设计方案,能可靠、合理地利用土体本身在开挖过程中控制位移的潜力,达到控制坑周地层位移以及保护环境的目的。从而改变目前基坑中为控制坑周地层位移而不合理地采用昂贵的地基加固做法。
从工程实用性和可靠性出发,在基坑支护结构(挡墙、支撑及挡墙被动区加固土体)的内力及变形计算中,采用弹性计算法所用的较简单的力学模型和设计参数项目,但对其中反映基坑变形总体效应的最主要的综合参数———基坑挡墙被动区的水平抗力系数,按一定的地质和施工条件,做出经验性的修正。此综合参数是土的力学性指标和每一步基坑挖土的空间尺寸及暴露时间的函数,其数值是根据在一定施工条件下基坑开挖中所测出的基坑变形数据,经反分析而得出的控制标准及设计外荷等依据的同时,合理地选定施工程序及施工参数,以完善设计依据并提供实施设计的保证,从而有效地解决流变性地层中深大基坑的控制变形设计不符合实际的问题。
根据基坑工程设计所选定的主要施工参数,按基坑规模、几何尺寸、支撑形式、开挖深度和地基加固条件,提出详细的可操作的开挖和支撑的施工程序及施工参数。开挖和支撑的施工工序基本是按“分层、分步、对称、平衡”的原则而制定的,最主要的施工参数是分层开挖的层数。每层开挖深度以及基坑挡墙被动区土体在基坑中间部分地层先开挖的工程中保留成支撑挡墙的土堤,此土堤断面尺寸按其能抵住挡墙的要求而定,亦为主要设计参数;严格按选定的施工程序和施工参数施工,就使复杂多变的施工因素变为较明确而有规律性的施工因素,其引发的时空效应也能较好地符合设计预期的要求。
在长方形基坑中,基坑开挖和支撑的施工技术要点是,按一定长度分段开挖和浇筑结构,在每段开挖中再分层。每层分小段开挖和支撑,随挖随撑,施加预应力,每小段的开挖和支撑的施工时间限制在一定限值之内。在不规则的基坑施工中,采用分层盆式开挖法,在每一层开挖中间部分并安装或浇注此范围的支撑,而后将各根支撑两端支承挡墙的土堤,分步、对称拆除并即时安装或浇注其间顶住挡墙的部分支撑。每个分步的开挖和支撑施工时间,根据支撑方式等具体情况,给定明确的控制值。
在运用基坑开挖中的时空效应规律时,基坑结构特性参数、地基土(包括加固土体)特性参数及施工工艺参数都是相互影响并共同对控制变形发挥作用的基本要素,它们都是控制基坑变形的设计依据,控制变形的设计要素。
3.2基坑降水
为减少井点降水对周围建(构)筑造成的影响和危害,通常采取下列措施:(1)采用全封闭形的挡土墙或其它的密封措施,如地下连续墙、锁口钢板桩、灌注桩、旋喷桩、水泥土搅拌桩等,将井点设置在坑内,井管深度不超过挡土墙的深度,仅将坑内水位降低,而坑外的水位将维持在原来的水位;(2)根据工程实际情况,适当地调整井点管的埋置深度;一般情况下,井点管的埋设深度应该使基坑内的降水曲面在坑底下0.5~1.0m;如在没有密封形挡土墙的情况下,基坑降水不仅使坑内水位下降,也使坑外水位下降。如果在降水影响区范围内有建(构)筑物、管线等需要保护时,可在确保基坑不发生流砂和地下水不从坑壁渗入的条件下,适当地提高井点管设计标高;(3)井点降水区域随着降水时间的延长,向外、向下扩张,若在两排井点的当中,基坑很快形成降水曲面,坑外降水曲面扩张较慢。因此,当井点设置较深时,随着降水时间的延长,可以适当地控制抽水量和抽吸设备真空度。当水位观察井的水位达到设计控制值时,调整设备使抽水量和抽吸真空度降低,达到控制坑外降水曲面的目的;(4)采用井点降水与回灌相结合的技术,在井点降水管井与需要保护的建筑、管线间设置回灌井点、回灌砂井或回灌砂沟,持续不断地用清洁水冲洗,(以免土体发生孔隙堵塞,降低土地渗透性能而影响回灌效果)回灌,形成一道水幕,以减少沉降;(5)井点应连续运转,尽量避免间隙和反复抽水,因为每次降水都会产生沉降,增加反复抽水地次数,使总的沉降量积累到相当可观的程度。(6)为减少坑内井点降水,减少降水曲面向外扩张,防止邻近建筑物基础下地基土因水位下降、水土流失而产生的沉降,在井点降水前,在需要控制沉降的建筑物基础周边,布置注浆孔,控制注浆压力。
建筑业查询服务