水处理的混凝方法与混凝剂具体包括哪些内容呢,下面鲁班乐标为大家带来相关内容介绍以供参考。
在工业废水和生活废水处理中,有一种很重要的物化处理方法:混凝法。这种水处理方法应用广泛,各种污染指标去除率高。下面对这一方法进行简单介绍。 1 混凝法 1.1 混凝法的概念 在天然水中和各种废水中,物质在水中存在的形式有三种:离子状态、胶体状态和悬浮状态。一般认为,颗粒粒径小于1nm的为溶解物质,颗粒粒径在1~100nm的为胶体物质,颗粒粒径在100nm~1mm为悬浮物质。其中的悬浮物质是肉眼可见物,可以通过自然沉淀法进行去除;溶解物质在水中是离子状态存在的,可以向水中加入一种药剂使之反应生成不溶于水的物质,然后用自然沉淀法去除掉;而胶体物质由于胶粒具有双电层结构而具有稳定性,不能用自然沉淀法去除,需要向水中投加一些药剂,使水中难以沉淀的胶体颗粒脱稳而互相聚合,增加至能自然沉淀的程度而去除。这种通过向水中加入药剂而使胶体脱稳形成沉淀的方法叫混凝法,所投加的药剂叫混凝剂。 1.2 混凝的基本原理 废水中的胶体物质具有巨大的比表面积,可以吸附液体介质中的正离子或负离子或极性分子等,使固液两相界面上的电荷呈不平衡分布,在界面两边产生电位差,这就是胶体微粒的双电层结构。形成双电层结构的微粒的整个胶体结构就称为胶团,整个胶团是电中性的。胶团中心是带有电荷的固体微粒本身,称为胶核。胶核所带电荷的符号就是胶体所带电荷的符号。胶体微粒之所以能在水中保持稳定性,原因在于胶体粒子之间的静电斥力(胶体常常带有同种电荷而具有斥力)、胶体表面的水化作用及胶粒之间相互吸引的范德华力共同作用。胶体微粒带电越多,其电位就越大,带电荷的胶粒和反离子与周围水分子发生水化作用越大,水化壳也越厚,越具有稳定性。向水中投加药剂,使胶体失去稳定性而形成微小颗粒,而后这些均匀分散的微小颗粒再进一步形成较大的颗粒,从液体中沉淀下来,这个过程称为凝聚。凝聚有以下几方面的作用: 1.2.1 压缩双电层与电荷的中和作用。加入电解质,使固体微粒表面形成的双电层有效厚度减小,从而范德华力占优势而达到彼此吸引形成凝聚;或者加入电不同电荷的固体微粒,使不同电荷的粒子由于静电吸引而彼此吸引,最后达到凝聚。 1.2.2 高分子絮凝剂的吸附架桥作用。高分子絮凝剂的碳碳单键一般情况下是可以旋转的,再加上聚合度较大,即主链较长,在水介质中主链是弯曲的。在主链的各个部位吸附了很多固体颗粒,就象是为固体颗粒架了许多桥梁,让这些固体颗粒相对地聚集起来形成大的颗粒。 1.2.3 絮体的网捕作用。有些混凝剂(如铝盐或铁盐)有水中形成高聚合度的多羟基化合物的絮体,在沉淀过程中可以吸附卷带水中胶体颗粒共同沉淀,此过程称为絮凝剂的网捕作用。 2 几种常见的混凝剂 常用的混凝剂有无机絮凝剂、有机高分子絮凝剂、生物絮凝剂等。无机絮凝剂主要产品有硫酸铝、聚合氯化铝、三氯化铁、硫酸亚铁和聚合硫酸铁、聚合硅酸铝、聚合硅酸铁、聚合氯化铝铁、聚合硅酸铝铁和聚合硫酸氯化铝等。有机高分子絮凝剂以聚丙烯酰胺类产品为代表,生物絮凝剂是一类由微生物产生的具有絮凝能力的高分子有机物,主要有蛋白质、黏多糖、纤维素和核酸。下面简单介绍几种常用的混凝剂。 2.1 硫酸铝(AS) 无水硫酸铝是无色结晶,易溶于水,常温下硫酸铝以含十八水合物最为稳定。Al2(SO4)3·18H2O是具有光泽的无色颗粒或粉末晶体,极易溶于水,水溶液呈酸性(PH<=2.5)。工业品为白色或微带灰色的粉末或块状结晶,因可能存在少量的硫酸亚铁而使产品表面发黄。硫酸铝是使用最早的絮凝剂之一。硫酸铝对水中胶体微粒的絮凝过程分为吸附脱稳、沉淀絮凝、吸附沉淀混合区和再稳定四个区域。加入过量的硫酸铝,会形成胶体再稳定而影响絮凝效果。硫酸铝价格便宜,应用较广泛。 2.2 聚合氯化铝(又称碱式氯化铝PAC) 聚合氯化铝是应用最广泛的一种絮凝剂,它的固体呈无色至黄色树脂状,易潮解,溶液为无色至黄褐色透明状液体,聚合氯化铝易溶于水并易发生水解,水解过程中伴随有电化学、凝聚、吸附、沉淀等物理化学现象。聚合氯化铝一般是由铝矿土与酸经过酸溶、水解、缩聚等复杂的过程而制成的。相对于硫酸铝而言,聚合氯化铝混凝效果随温度变化较小,形成絮体的速度较快,絮体颗粒和相对密度都较大,沉淀性能好,投加量较小。聚合氯化铝适宜的PH值范围在5-9之间,过量投加一般不会出现胶体的再稳定现象。长期的实践证明,作为絮凝剂,聚合氯化铝优于硫酸铝,很多净水场的硫酸铝已经逐步被聚合氯化铝所替代。聚合氯化铝水溶液呈弱酸性,PH值在5.5-6.0,对设备的腐蚀性很小。 2.3 聚合硫酸铁(PFS) 聚全硫酸铁有固体和液体两种形式,液体为红褐色粘稠液,固体为淡黄色或浅灰色的树脂状的颗粒。在产品的储存的使用过程中,聚合硫酸铁对设备基本无腐蚀作用。聚合硫酸铁投药量低,而且基本不用控制液体的PH值。与铝盐相比,聚合硫酸铁絮凝速度更快,形成的矾花大,沉降速度更快;另外,它还具有脱色、除重金属离子、降低水中COD、BOD浓度的作用;但是其出水容易显黄色。 2.4 聚丙烯酰胺(PAM) 按离子特殊性分类,可分为阳离子型、阴离子型、非离子型和两性酰胺四种。阳离子酰胺主要用于水处理,阴离子酰胺主要用于造纸、水处理,两性酰胺主要用于污泥脱水处理。聚丙烯酰胺易溶于冷水,分子量对溶解度影响不大,但高分子量的酰胺浓度超过质量分数10%以后,会形成凝胶状态。溶解温度超过50度,PAM发生分子降解而失去助凝作用。因此溶解聚丙烯酰胺时要用45-50度的温水最为适宜。配制聚丙烯酰胺溶液一般配成质量浓度为0.05-2%,阳离子酰胺粘度较小,可配制成浓度较大的溶液,阴离子酰胺粘度较大,可适当配制成浓度较小的溶液。配制溶液时不可浓度过大,否则不容易控制加药量,容易造成加药过量。聚丙烯酰胺的加入量很小,一般加药量在0.1-2ppm。聚丙烯酰胺溶液用于处理废水时,加药后的絮凝效果与搅拌时间与搅拌有关。当已经形成大块絮凝时,就不要再继续搅拌,否则会使已经形成的较大矾花被打碎,变成细小的絮凝体,影响沉降效果。 3 影响絮凝效果的因素 絮凝作用是复杂的物理和化学过程,絮凝处理效果是由多种因素综合作用的结果。影响絮凝效果的因素主要有以下几点: 3.1 温度的影响:水温升高絮凝效果则会提高,在低温条件下,必须增加絮凝剂用量。另一方面,水温过高,形成的絮凝体细小,污泥含水率增大,难以处理。所以,水温过高或过低对絮凝均不利。一般水温条件宜控制在20-30℃。 3.2 水体PH值的影响:每种絮凝剂都有它适合的PH值范围,超出它的范围就会影响絮凝效果。比如聚丙烯酰胺,阳离子型适用于酸性和中性的环境中使用,阴离子型适用于在中性和碱性的环境中使用,非离子型适用于从强酸性到碱性的环境中使用。 3.3 絮凝剂的性质和结构影响:对于高分子絮凝剂来说,其结构和性质对絮凝作用影响很大。无机高分子絮凝剂的聚合度越大,其电中和能力和吸附架桥功能越强。而对于有机絮凝剂来说,除了聚合度的影响外,线性结构的絮凝剂絮凝作用大,而环状或支链结构的有机高分子絮凝剂絮凝效果就差。 3.4 絮凝剂投加量的影响:各种絮凝剂都有在相应条件下的最佳投加量,低于或者超过这个最佳量都会使絮凝效果变差。用量不足时,絮凝不彻底,用量过量则会造成胶体的再稳定,降低絮凝效果。所以,不同的絮凝剂要在使用之前做小试确定其最佳加入量。 3.5 水力条件的影响:为了使絮凝剂与水体充分接触,增加颗粒碰撞速率,往往要进行机械搅拌,而搅拌的速度和时间必须适当。搅拌时间太短,絮凝不充分;搅拌速度太快,时间太长,会使已经形成的絮凝被打碎,降低高分子链的架桥吸附能力。
建筑业查询服务