岩土工程中的预测与预算是怎样的呢,下面鲁班乐标为大家带来相关内容介绍以供参考。
岩土材料是天然的地质历史的产物,它一般是碎散的、不连续或部分连续的介质。材料性质十分复杂;具有极大的时空变异性。在岩土工程中,其地基或者岩土环境几乎不可能完全探知;边界条件和操作过程也有很大的影响。因而岩土工程问题具有很强的不确定性。这种不确定性包括互补率的破缺,即非此非彼的情况,是属于模糊判断的课题。另一方面是因果率的破缺,亦即因果关系的不确定性,一因多果。是属于概率、数理统计和混沌学的范畴。所以对于这样一个复杂的对象和众多的影响因素,准确的定量的预测和预算是相当困难的。依靠纯理论和技术技巧预测往往不成功,而经验的判断是不可缺少的。
土以碎散的颗粒为骨架,由固、液、气三相物质组成;在其由岩石风化的生成、搬运和沉积过程中几经沧桑,形成了不同于其他材料的复杂的力学性质,而不同时空条件下土的性状也各不相同。所以尽管已提出的土的本构关系理论数学模型不下百种,动用了传统力学和现代力学的各种理论和手段,但是到目前为止,还没有一种为人们所公认的,能够准确、全面反映各种土的应力应变关系的数学模型。是否存在这样的模型也是值得怀疑的。
在计算机和计算技术基础上发展起来的,以有限元为代表的数值计算是解决边值问题的强有力的手段。当用来计算弹性体时其精确程度令人叹为观止。其计算结果与光弹试验结果毫厘不差,结果光弹试验很快被废止。土是碎散材料,而在一般数值计算中首先被假设为连续体,然后被离散化,假设各单元间的结点位移协调,计算土体的应力变形关系。这常常不能反映土的变形的微观机理。以DDA(Discontinuous Deformation Analysis)为代表的离散单元计算方法在计算某些农产品(如谷类)和工业零件(如滚珠)时是相当成功的。以至被称为“数值试验”可以精确地代替模型试验。在定性地探索土的变形的微观机理时,也是很有价值的。但是用以描述由不同尺寸、不同形状、不同矿物成分的颗粒组成的土,反映不同三相成分及其物理、化学和力学的相互作用,即使是可能,恐怕也是相当遥远的事。
数学模型和数值计算预测的另一个难点是土的参数的选取,它受到取样(制样)和试验手段的限制。原状土在取样过程中不可避免地受到扰动和发生应力释放,会破坏其结构性。即使是重塑土试样,制样的方式、器具和操作程序的差别也严重影响试验的结果。另一方面,目前使用的土工试验仪器也存在局限性。以真三轴仪为例,由于边界之间的干扰,试样的应力和应变的均匀是很难保证的。
在对地基和土工建筑物的探测方面,土层的时空变异及人类活动给勘探测试及其结果的判释造成困难。除此以外,岩土工程中的复杂边界条件和施工过程中的诸多因素也严重影响工程的实际结果。
在我国每年发表和撰写了大量的论文和报告,提出了各种理论、模型、计算方法、计算程序和技术手段,常常伴以试验或者实测数据的验证,其结果也常常是“符合得很好”。自己的试验或观测证实了理论或者方法的完美,正是:“各夸自家颜色好,百花园中各称王。” 这种结果的可信性很值得怀疑。笔者在评阅一些论文和成果时,对于那些二者符合得完美到天衣无缝的图与曲线,常常怀有很大的不信任感;而对于存在相当差别,甚至坦率地承认预测的不成功的情况,则是完全理解的。可惜后者较少。
近年来,主要在国外进行了多次的“考试”或者“竞赛”活动:首先委托一个(或几个)单位进行所谓的“目标试验”,亦即需要预测或者预算的试验或实例。其结果是保密的,或者预测前不做试验,预测以后在试验。事先公布有关的土的一般资料、基本试验的数据(为确定有关参数)和目标试验的应力(应变)路径。在全世界或者一定范围征求参赛者(参加目标试验的人不参赛)。全部预测结果上交以后,公布试验结果。一般是召开研讨会,评估或者评分。参赛者也常常进行申辩和总结。这是一种客观、公正和有权威性的检查比较方式。也是推动岩土工程发展的十分有益的活动和手段。它使我们认识到在岩土工程领域,我们的认识能力和预测能力到底有多高。 试验方法和设备的检验比较
1. 不同仪器的相同试验的检验
1982年在法国Grenoble召开的“土的本构关系国际研讨会”上①,用剑桥式的立方体真三轴仪分别由德国的Karlsrube大学和法国的Grenoble大学对同样的砂土和粘性土进行复杂应力路径和应变路径的真三轴试验,两份试验结果是存在着差别的。由于使用的仪器与土料都是相同的,差别主要源于操作方法和技巧。
1987年在美国克里夫兰召开的“非粘性土的本构关系国际研讨会”上②,利用美国Case大学的空心圆柱扭剪仪和法国Grenoble大学的剑桥式立方体真三轴仪进行砂土的相同应力路径的试验。试验内容包括:
(1) b=不同常数的不同密度两种砂土的真三朝试验;其中, b=(σ1-σ2)/(σ1-σ3)
(2)在π平面上应力路径为圆周(两周)的的真三轴试验。
(b=常数的真三轴试验与空心圆柱试验的比较)表示了对于Hostun密砂(干密度ρd=1.65g/cm3) 在b=不同常数,中主应力ρ2=500kPa保持不变,用两种仪器试验得到的轴向应力与轴向应变关系曲线,轴向应变和体应变的关系曲线。可见在b=0和0.28时,不同仪器试验结果的差别是很大的。但是在评价它们时,主持者说:对于轴应变,除了0.286的结果很差(very poor)以外,其他的曲线符合的很好(very well);(b.体应变εv与轴向应变εz间试验曲线)的曲线认为符合得很优良(excellent)。对比我们的一些论文中理论与实际曲线二者丝丝入扣的符合,就显得很不真实。在这两个试验中试样的破坏形态也有很大不同:空心圆柱试样发生颈缩;立方体试样产生V形的剪切带。这些差别可能是由于试样的制样方法不同,试样中的实际应力分布不同和试验中的边界条件不同引起的。
2. 土工离心机模型试验
1986年由欧洲共同体资助,发起“土工离心机的合作试验”③。参赛者有三家:英国的剑桥大学、法国的道桥中心研究室和丹麦的工程院。试验的内容是模拟饱和砂土地基上的圆形浅基础的承载力和荷载—沉降关系。试验土料统一为巴黎盆地天然沉积的一种均匀石英细砂。模型地基的孔隙比规定为e=0.66(相对密度Dr=86%),规定圆形基础的模型尺寸为直径D=56.6mm, 离心加速度=28.2g,基底完全粗糙。此前,由丹麦岩土研究所对于这种土进行了物性试验和三轴试验,其结果公布于众。要求荷载—沉降关系表示成无量纲的变量q/γˊnb-s/b公关系曲线。
其中:
q=基础上施加的荷载(kPa) γˊ=乙土的浮容重(kN-m3) n=重力加速度水平,即模型比尺 b=模型基础的尺寸(m) s=基础的中心垂直沉降(m) 同时也进行了相同条件下的现场载荷试验,以便与模型试验结果对比。
这三家使出了浑身解数,精心制样、安装、运转和量测,反复摸索,反复校验,校正各种参数和影响因素。剑桥大学还在离心机上作了静力触探试验。最后,剑桥大学提交了一组试验结果,另外两家按要求给出了一条曲线。图2(圆形天然浅基础的试验荷载-沉降关系曲线)表示了其试验结果,其中剑桥大学是笔者选取的最接近于要求的条件的试验结果(e=0.664)。
可见,这种世界先进水平的土工离心模型试验的误差在±30%以上。值得提出的是,这是一种条件非常简单明确的模型试验。而现场的工程实际情况的条件和影响因素远比这复杂。在这个试验中,加载速率、模型地基砂的密度、制样方法和运行程序对试验结果都有影响。例如剑桥大学的试验表明,砂土的孔隙比变化0.01(相当于相对密度变化3%),则其承载力变化18%,如图3(地基承载力与模型地基孔隙比间关系—剑桥大学试验结果)所示。而由于模型地基是先制样,后运转,保证地基内砂土处处均匀,孔隙比误差在0.01范围内是有较大难度的。
3. 单桩的动测法的考试
1992年在荷兰海牙进行了一次动测桩的“考试”④。在第一轮,10根预制桩预先被沉入地基,桩径250mm,桩长18m(7#桩17m)。要求测出其预制的“缺陷”。其中一根桩完整无缺;其余的9根桩各有缺陷:颈缩、扩径和在不同部位的10mm宽,130mm深的刻槽。事先由特尔夫公司进行了地基勘察,将土层资料公布于众。有12家具有国际声誉的公司参赛,用小应变动测法检测。结果是:平均测对4根;最多对7根,最少对两根。没有一家测出那根完整无损的桩。他们认为对于只有10mm宽的缺痕很难分辨。
第二轮是沉入11.5m-19m长的5根桩,然后用静载荷试验测出极限承载力。10家公司用大应变动测法测试其极限承载力。其结果也不乐观。比如,由静载试验为340kN的一根桩,各家给出的结果分布在90kN-510kN的范围。
建筑业查询服务
行业知识