存在于混凝土中的氯盐分为三种形式:溶解于孔隙中的游离氯离子,与水泥水化产物结合的氯化物,和凝胶体空隙中吸附的氯化物。游离氯离子参与氯化物的传输和钢筋腐蚀过程,氯化物也能对混凝土造成损害,降低混凝土强度。氢离子侵入混凝土,与CH发生“中和”反应,降低混凝土孔溶液中OH-浓度,导致孔溶液pH值下降。从而改变混凝土的微观结构。腐蚀介质浓度某一值时生成的CaS04•2H20和钙矾石(3CaO•Al203•3CaS04•32H20)由于体积膨胀。浸泡早期填充混凝土表面孔隙,延缓侵蚀离子渗入,延缓劣化速率,提高混凝土抗压强度,但是后期随着基体pH值下降,水化产物解体,石膏和钙矾石膨胀导致混凝土开裂,加剧混凝土的腐蚀。有关混凝土工程的安全性评估及寿命预测问题,目前研究者针对某单一因素对混凝土腐蚀的影响研究的较多,对多因素耦合作用下混凝土腐蚀行为研究的尚少。熊卫士,高飞,韩东对多因素作用下的混凝土耐久性进行了综述,提出了研究趋势,但不包括多种腐蚀介质作用下的混凝土耐久性研究,王信刚,章未琴,陈方斌等进行了高性能水泥基材料的耐久性能及其微观结构研究,得出了各种水泥材料在氯离子、硫酸根离子和抗冻、抗碳化的条件下的性能和微观结构,乔红霞、陈丁山、何忠茂等对盐渍土地区混凝土硫酸盐腐蚀加速试验制度进行了评价,刘影、金祖全、张宇研究了海水对混凝土中钢筋锈蚀的影响,许豪文、刁波、沈孛等对裂缝及环境对混凝土中氯离子扩散的影响进行了研究,董建锋,邢峰,戴虹等研究了混凝土不同面的氯离子侵蚀规律,结构表明,同一表面高性能混凝土抵抗氯离子侵蚀能力优于普通混凝土,迎风面的氯离子侵蚀程度高于侧风面和被封面。由于工程所处环境不同,影响因素众多,腐蚀介质存在差异甚至差异悬殊。在海洋、化工及盐渍土地区,酸、氯盐和硫酸盐是引起混凝土结构腐蚀的主要原因。因此,单一腐蚀介质与工程实际相差较大,研究结果难以直接应用于实际工程。但是任何试验不可能穷尽所有的腐蚀环境和工程结构,本研究也是选择有代表性的腐蚀环境,尽可能的接近工程实际。
试验概况
(1)腐蚀介质:自来水、盐晶体、浓硫酸。采用质量配比,介质浓度百分比按几何级数增加,尽可能包含一般腐蚀环境状况。腐蚀介质配合比和试验情况如表1所示。(2)试验周期:为24个月,每60天进行一次检测,共需检测12次。(3)试件环境:在试验室内进行,保持恒温、恒湿。
试验设备
(1)腐蚀试验室与腐蚀池:腐蚀试验室及腐蚀池如图1所示。(2)烘干设备:高低温试验箱如图2所示。图2高低温试验箱(3)万能试验机:万能伺服试验机如图3所示。
试验结果及分析
典型试件腐蚀情况
混凝土腐蚀情况见图4。存在于混凝土中的氯盐分为三种形式:溶解于孔隙中的游离氯离子,与水泥水化产物结合的氯化物,和凝胶体空隙中吸附的氯盐。前者参与氯化物的传输和钢筋腐蚀过程,后者虽不参与这两个过程,但也能对混凝土造成损害,如晶体NaCI•2H2O存在于混凝土孔隙中产生30%的膨胀,降低混凝土强度。侵蚀到混凝土中的氯离子,与C3A等物质发生化学反应,生成氯铝酸盐,膨胀量较小。在适当条件下,混凝土孔隙液中的游离氯离子产生经变膨胀,是导致混凝土内部产生膨胀应力的主要原因。氯盐会促进混凝土氢氧化钙溶出和C-S-H胶凝分解,生成膨胀性复盐破坏氢氧化钙和C-S-H胶凝之间的平衡。由于复盐主要分布于混凝土表面,因此表面C-S-H胶凝的分解与复盐的膨胀必然导致混凝土表面的溃散,达一定程度后会使混凝土材料出现疏松、裂缝、脱皮等现象,降低混凝土的强度。混凝土在酸性环境中易发生“中和”或者分解反应,造成混凝土强度降低,减短结构的使用寿命。氢离子侵入混凝土,与CH发生“中和”反应,降低混凝土孔溶液中OH-浓度,导致孔溶液pH值下降。而各种水化产物稳定存在的碱性条件依靠水泥水化产物中CH(氢氧化钙)的溶解来维持,CH消耗殆尽时,溶液pH值小于一定值时,水泥水化产物便会分解,或者氢离子直接与水泥水化的各种碱性产物发生化学反应,从而改变混凝土的微观结构,宏观上则表现为混凝土的物理力学性能与耐久性降低。腐蚀介质达到某一浓度时生成的CaS04•2H20和钙矾石(3CaO•Al203•3CaS04•32H20)由于体积膨胀。浸泡早期填充混凝土表面孔隙,延缓侵蚀离子渗入,延缓劣化速率,提高混凝土抗压强度,但是后期随着基体pH值下降,水化产物解体,石膏和钙矾石膨胀导致混凝土开裂,加剧混凝土的腐蚀。
试验结果与分析
混凝土强度损失混凝土试块在介质中浸泡的早期阶段,腐蚀即发生,先是混凝土表面的水泥胶凝体脱落,细集料砂露出,随着时间增长,逐渐露出粗骨料石子;同时,介质浓度越大,混凝土表面腐蚀程度越严重。腐蚀中期,混凝土试块边缘出现裂缝,进而棱角处混凝土发生脱落。浸泡后期,混凝土试块溃散、碎裂、整体破坏,彻底失去强度(见图4(a)、(b))。单轴抗压试验发现,低浓度中的混凝土试块早期强度略有增加,中后期强度逐渐降低。观察试验破坏后的试件,腐蚀介质侵入试块内部,介质浓度不同侵蚀也不同程度(见图4(c))。图5为混凝土强度损失率与腐蚀时间的关系。
混凝土SEM分析混凝土中水泥浆体是最容易受到腐蚀的组分,为了探讨混凝土在酸性环境中腐蚀机理及水泥水化产物组成、结构的变化,采用扫描电子显微镜(SEM)进行分析。通过对比腐蚀产物和未腐蚀体化学成分和微观形态的变化,分析在腐蚀介质作用下混凝土性能的劣化机理。图6为混凝土SEM图。分析结果可以看出,水泥水化产物被腐蚀后,CaO、SO2和MgO含有量变化很大。这是因为水泥水化产物在酸性环境下发生分解或者“中和”反应生成钙盐而流失,其中有一部分生成CaS04•2H20而滞留在腐蚀层中,一部分形成NaCI•2H2O晶体存在于混凝土孔隙中,硅和铝等以胶体形式存在于腐蚀层中。由于水泥水化产物结构破坏,物质流失,使得浆体孔隙率变大,侵蚀性介质更加容易进入基体内部而加剧腐蚀进程,图中可以清楚看到浆体微观结构的变化,未腐蚀区域有云状C-S-H凝胶等,腐蚀区域有大量柱状晶体,测试结果证明此柱状晶体为CaS04•2H20和NaCl•2H2O,同时尚有未水化的粉煤灰颗粒,但依然有大量的孔隙存在。其他物质在电镜下,都呈颗粒状。水泥水化产物中的凝胶体已经消失,分析表明,在不同浓度的H+、SO-24和CI-作用下,不同的离子浓度可能会导致不同的变化历程,混凝土孔隙结构的变化规律存在差异,但最后的结果却是相同的,混凝土的孔隙率都会变得较大。
(1)在不同浓度的氯化钠与浓硫酸混合介质作用下,浸泡早期,腐蚀介质渗入到混凝土内部孔隙,经过一系列物理化学反应致使混凝土内部孔隙填充密实,抗压强度有所提高,此过程的延续时间因介质浓度不同而不同且与介质浓度成反比。随着腐蚀时间的增长中后期强度迅速降低,浓度越高强度降低速度越快,直至完全失去承载力。
(2)SEM分析表明,在H2S04和NaCl混合腐蚀介质作用下,混凝土受到侵蚀的根本原因是水泥水化产物在混合介质中分解或者与酸根离子发生反应而消失,造成基体内部微观结构变化,从而导致混凝土结构性能的劣化和混凝土强度的降低。
(3)分析表明,在不同浓度的H+、SO-24和CI-共同作用下,不同的离子浓度变化历程可能不同,混凝土孔隙结构的变化规律也存在差异,但最后的结果却是相同的。
建筑业查询服务